The determinant of a matrix is a number that is specially defined only for square matrices. Determinants are mathematical objects that are very useful in the analysis and solution of systems of linear equations. Determinants also have wide applications in engineering, science, economics and social science as well. Let’s now study about the determinant of a matrix.
The Determinant of a Matrix
To every square matrix A = [aij] of order n, we can associate a number (real or complex) called determinant of the square matrix A, where a = (i, j)th element of A. This may be thought of as a function which associates each square matrix with a unique number (real or complex).
If M is the set of square matrices, K is the set of numbers (real or complex) and f : M → K is defined by f (A) = k, where A ∈ M and k ∈ K, then f (A) is called the determinant of A. It is also denoted by | A | or det A or Δ.
IfA=[acbd],then determinant of A is written as |A| =∣∣∣acbd∣∣∣=detA